
Citation: Yavuz, M.; Koutalakis, P.;

Diaconu, D.C.; Gkiatas, G.; Zaimes,

G.N.; Tufekcioglu, M.; Marinescu, M.

Identification of Streamside

Landslides with the Use of

Unmanned Aerial Vehicles (UAVs) in

Greece, Romania, and Turkey. Remote

Sens. 2023, 15, 1006. https://doi.org/

10.3390/rs15041006

Academic Editors: Anja Dufresne

and Nicole Richter

Received: 30 November 2022

Revised: 21 January 2023

Accepted: 9 February 2023

Published: 11 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Identification of Streamside Landslides with the Use of Unmanned
Aerial Vehicles (UAVs) in Greece, Romania, and Turkey
Mehmet Yavuz 1 , Paschalis Koutalakis 2 , Daniel Constantin Diaconu 3,
Georgios Gkiatas 2 , George N. Zaimes 2,* , Mustafa Tufekcioglu 1 and Maria Marinescu 4

1 Department of Forest Engineering, Faculty of Forestry, Artvin Coruh University, 08100 Artvin, Turkey
2 Geomorphology, Edaphology and Riparian Areas Laboratory (GERi Lab), Department of Forestry and

Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece
3 Ministry of Investments and European Projects, 013681 Bucharest, Romania
4 Buzau Ialomita Water Administration, 120208 Buzau, Romania
* Correspondence: zaimesg@for.ihu.gr

Abstract: The alleviation of landslide impacts is a priority since they have the potential to cause
significant economic damage as well as the loss of human life. Mitigation can be achieved effectively
by using warning systems and preventive measures. The development of improved methodologies
for the analysis and understanding of landslides is at the forefront of this scientific field. Identifying
effective monitoring techniques (accurate, fast, and low cost) is the pursued objective. Geographic
Information Systems (GISs) and remote sensing techniques are utilized in order to achieve this
goal. In this study, four methodological approaches (manual landslide delineation, a segmentation
process, and two mapping models, specifically object-based image analysis and pixel-based image
analysis (OBIA and PBIA)) were proposed and tested with the use of Unmanned Aerial Vehicles
(UAVs) and data analysis methods to showcase the state and evolution of landslides. The digital
surface model (DSM)-based classification approach was also used to support the aforementioned
approaches. This study focused on streamside landslides at research sites in three different countries:
Greece, Romania, and Turkey. The results highlight that the areas of the OBIA-based classifications
were the most similar (98%) to our control (manual) classifications for all three sites. The landslides’
perimeters at the Lefkothea and Chirlesti sites showed similar results to the OBIA-based classification
(93%), as opposed to the Sirtoba site, where the perimeters of the landslides from OBIA-based
classification were not well corroborated by the perimeters in the manual classification. Deposition
areas that extend beyond the trees were revealed by the DSM-based classification. The results are
encouraging because the methodology can be used to monitor landslide evolution with accuracy and
high performance in different regions. Specifically, terrains that are difficult to access can be surveyed
by UAVs because of their ability to take aerial images. The obtained results provide a framework for
the unitary analysis of landslides using modern techniques and tools.

Keywords: drone; erosion; GIS; image-based techniques; landslide mapping; mudflow; orthomosaic
analysis; protect; remote sensing; streamside; streams

1. Introduction

Landslides are irregular and active landforms generated by the gravitational downs-
lope movement of rocks, soils, or both [1]. They are complex natural phenomena, generated
by a wide range of factors (geology, slopes, land use, climate, etc.) and occur in different
forms and types (deep earth movements, rapid landslides such as falling rocks, muddy
flows, etc.) [2]. Differences in the predominant type of transported material and different
deposit formations lead to many different types and categories [3–7]. Globally, landslide-
induced losses of human infrastructure and life have substantially increased [4]. Each type
of landslide has different characteristics and needs to be studied.
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Of special interest are streamside landslides [8–10], which occur along streambanks or
the adjacent steep terrain within the riparian zone; they transport soil, rock, and vegetation
to stream channels and affect stream sedimentation. These are considered erosion control
hot-spots because they are highly affected by the vegetation (roots) and water present
in the soil. Part of a rock’s or soil’s shear strength is based on cohesion rather than
interparticle friction [11]. The cohesion index is the relative contribution of soil to inhibiting
the development of a slope failure through root cohesive forces; thus, along with the slope,
it plays a significant role in landslides and especially in streamside landslides, which are
influenced by riparian zones [12–14]. The primary landslide types that have an impact on
streams are debris slides and flows [15,16]. These landslides impact the drainage-basin
sedimentation rates since they can provide substantial volumes of transported materials
from the hillslope to stream channels [17,18] and affect sediments distributed in stream
channels over time and space [19]. Streamside landslides also cause major disturbances in
the adjacent riparian ecosystems (geomorphic, abiotic, and biotic) [20].

The main parameters measured for a landslide to enhance the understanding of its me-
chanics and processes are (a) the vertical and horizontal displacements of the sliding body,
(b) the pressures exerted during the landslide, and (c) the groundwater, spring, and surface
water properties [21,22]. The variety of landslide types and characteristics, along with the
landforms over which they take place and the accessibility of the research area, leads to the
utilization of diverse monitoring equipment and technologies [23,24]. Easily identifying
the areas affected by landslides, understanding their process, and monitoring them will
protect the human population, reduce economic losses, and, more importantly, lead to the
adoption and implementation of timely and cost-effective preventive measures [25,26].

Early warning and real-time monitoring systems have become important for land-
slide mitigation measures due to their efficiency with the use of affordable equipment and
technologies compared to traditional ones [27,28]. New tools define the characteristics of
landslide locations, provide soil conditions, and reveal the effectiveness of different mitiga-
tion methods [29]. Effective landslide-monitoring technologies require the combination of
theoretical and field analyses [30–34]. The technologies and techniques used for landslide
monitoring can be classified into three main categories: (a) statistical methods and rating
schemes for landslide susceptibility hazard and zonation mapping [35–38], (b) remote
sensing techniques [39–41], and (c) field measurement methods [4]. The first category
estimates the probability of potential landslides. The second category uses sensors that
record data, located away from the landslide. This category includes Synthetic Aperture
Radar (SAR), which uses electromagnetic radiation to generate two-dimensional images
or three-dimensional reconstructions to detect moving objects and estimate their ground
velocity and positions [42]. The Laser Interferometer Space Antenna (LISA) is a ground
antenna of an Interferometric Synthetic Aperture Radar (InSAR) system that receives im-
ages of the ground area, minimizing the effect of bad weather on the ability to obtain
high-quality images [43]. Light Detection and Measurement (LiDAR) scans landslides to
create point clouds and determine or monitor any deformations [44–48]. To locate active
landslide areas, the global positioning system (GPS) is also being used [49,50].

Photogrammetric techniques use calibrated cameras with specific lenses and settings
to monitor ground motion. These techniques are based on field measurements, specifically
ground control points (GCPs), whose positions are determined periodically and repre-
sented in the GIS system [51,52]. Fiber optic (reflectometer) (OTDR) sensors are an effective
monitoring technique and detect vibrations generated by ground movements but are very
expensive. There has also been significant interest in Wireless Sensor Network (WSN)-
based methods for landslide monitoring [53]. Utilizing images obtained by the networks,
a series of algorithms are applied to improve their quality. A cutting-edge analytics tool
called machine learning has been utilized to analyze large datasets, with a focus on the
development of early warning systems for landslides, landslide detection using images,
and landslide susceptibility assessment [54]. Object-based image analysis (OBIA) and
pixel-based image analysis (PBIA) have received significant interest for mapping landslides
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based on the image segmentation and classification approach [34,55–58]. Their applica-
tions have increased due to the widespread use of Unmanned (or Unoccupied) Aerial
Vehicles (UAVs). For the detection and monitoring of landslides, remotely sensed data
(photogrammetric products) and related tools have become crucial [59]. Nowadays, UAVs
have become a necessary tool in order to monitor, analyze, and measure landslides [60].
UAV-based products preprocessed with artificial intelligence technologies are very helpful
for landslide detection, not only for creating susceptibility maps and inventories but also
for predicting spatial landslide evolution [61]. Image cross-correlation functions and digital
elevation model (DEM) subtraction techniques are applied to structure-from-motion (SfM)
photogrammetric products (e.g., UAV-based orthomosaics) in order to determine the area
affected by the landslide using manual delineation [62]. Different machine learning (ML)
methods, for example, the multilayer perceptron neural network, K-Nearest Neighbor,
random forest, and Decision Tree, have been evaluated with the inclusion of spatial, spec-
tral, and contextual properties based on airborne or UAV-borne flights and DEMs for
landslide detection [58].

Effective landslide mitigation can be achieved through the development of early
warning systems, susceptibility assessments, and detection based on images [63]. The
critical task at the moment is to thoroughly detect and analyze such phenomena in a timely
and cost-effective manner. Despite the numerous methods proposed and tested over time,
there are still constraints and gaps that affect the quality of data acquired by UAVs in
this scientific field [64–68]. The objective of the present study was to identify hot-spots of
streamside landslides utilizing UAV data on landslides in Greece, Romania, and Turkey and
to improve this methodology. To achieve this objective, four different methods using images
from high-tech drones were applied and tested. Initially, the drone’s images were used
to produce photogrammetric products (e.g., orthomosaics and DSMs) and then analyzed
in GIS to develop aspect and hillshade maps. The four methods included are (1) manual
landslide delineation based on previously described products; (2) a segmentation process
and two mapping models (OBIA and PBIA); (3) a showcase of the state; and (4) the evolution
of streamside landslides.

2. Materials and Methods
2.1. Case Studies

This work was carried out at three different streams located in Greece, Romania, and
Turkey (Figure 1). The streams selected are part of the Aggitis River Watershed (Greece),
Buzau River Watershed (Romania), and Arhavi River Watershed (Turkey), all pilot areas
of the Protect-Streams-4-Sea project funded by Joint Operational Programme BLACK
SEA BASIN 2014-2020 (Project Number: BSB963). The Protect-Streams-4-Sea project is
focused on the collaborative environmental monitoring of nonpoint source contaminants
and litter that enter the Black Sea. This will be accomplished by emphasizing inland
pollutants and waste, particularly those that originate from rivers and their watersheds
that discharge into the Black Sea. In order to accomplish the aforementioned goals, a
joint monitoring program on these pollutants and litter has been established to encourage
“the coordination of environmental protection and joint reduction of pollutants and litter
through the adoption of best management practices.” One of the activities is to monitor
“hot-spots” of soil erosion/or deposition in the stream network of the pilot areas (e.g.,
landslides). Sentinel-2 satellite images were utilized to find possible hot-spots (landslides,
bare soils, mines, and quarries) using the Normalized Difference Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI), and Normalized Difference Soil Index (NDSI)
in the entire pilot areas of Buzau, Aggitis, and Arhavi Watersheds. It was difficult to
determine the extent of small-sized landslides precisely due to the spatial resolution of
Sentinel-2 imagery (10 m for RGB-NIR and 20–60 m for multispectral bands). To better
define the landslides’ extent, UAV imagery with 1–5 cm spatial resolution was used. The
studied sites are streamside landslides that have been selected as representative “hot-spots”
of the entire water basins belonging to the above-mentioned pilot areas.
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Figure 1. The three case study areas were located in (A) Aggitis River Watershed in Greece, (B) Buzau
River Watershed in Romania, and (C) Arhavi River Watershed in Turkey.

2.1.1. The Lefkothea Site of the Aggitis River Watershed (GREECE)

This case study is a torrent that is part of the Aggitis River Watershed and located near
Lefkothea Village at latitudes between 41.0240◦ and 41.0155◦N and longitudes between
23.9196◦ and 23.9249◦E in the World Geodetic System 1984 (WGS84) (Figure 2). Aggitis
River, the major tributary of the Strymonas River in the Greek territory, is 75 km long
and is located in the Falakro massif and Kato Nevrokopi Plateau [69,70]. The Aggitis
watershed covers an area of 2707 km2. The Menoikio Mountain, Falakro Mountain, and
Ori Lekanis and Paggeo Mountains surround the watershed [71]. The stream network of
the Menoikio Mountain is dominated by intermittent and ephemeral torrents [72]. The
hydrographic network combines dendritic and parallel stream patterns due to the geology,
geomorphology, and tectonic activity of the region [73]. In the past, the area was near
the shore of Achinos Lake and its marshes, which were drained in 1932 as a result of the
Strymonas River Basin’s engineering work plan [74,75]. The specific studied torrent is
located at the south foothills of the Menoikio Mountain (near the Lefkothea Village), where
the soils are extremely vulnerable to erosion [76]. The geologic substrate consists of a ~5 m
layer of quaternary breccio-conglomerates and a ~220 m layer of silty clays, limy siltstones,
and marls deposited in one monotonous clayey-limy-silty sediment with Aulacoseira fossils,
representing the character of the “lake” and the Pliocene period [77]. Due to severe soil
erosion, particularly in other Neogene (Miocene–Pliocene), red beds, and Quaternary
sediments, the steep slopes produced numerous gullies [75,78]. The above characteristics
form an intense hydrographic network with unstable slopes, while, in many locations,
debris slides and gullied scarps have been recorded [79]. The preconditioning factors of
the Lefkothea site are (a) regional tectonic activity with the active NW–SE-trending normal
fault “Tholos–Nea Zichni” [80] and (b) the composition of the regional soils (silty clays,
limy siltstones, and marls) which are extreme vulnerable to deep and intense gully erosion.
The triggering factor is the extreme rainfall events that triggered the described phenomena:
80.6 mm in April 2021; 109.9 mm on 15 October 2021; and 98.2 mm on 11 December 2021,
as recorded at the Micropoli weather station located in the Menoikio Mountain Range.
Agricultural areas, sclerophyllous flora, natural grasslands, and broad-leaved forests make
up the majority of the land cover of the pilot area, according to the locations noted in the
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2018 Corine land cover data. Based on the meteorological station in Drama, the general
climatic type in the Aggitis–Drama Basin has been found to be Mediterranean with hot
summers (Csa) (Data 1975–2001). This comes from the fact that the driest month’s average
rainfall does not exceed 30 mm (September, 22.50 mm high mean rainfall), whilst the
average rainfall in the wettest month is at least three times higher than that in the driest
month (56.60 mm in December). In the same manner, July, the hottest month, has an
average temperature higher than 30 ◦C. Summer temperatures can reach 40 ◦C, while
winter temperatures can dip to −15 ◦C or even lower. In the winter, the area receives high
precipitation (rain and snow). The riparian vegetation is characterized as sclerophyllous
with pastures and agricultural fields that are cultivated with yearly crops, and there are
also a few olive orchards.
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Figure 2. The location of the Lefkothea study site within the Aggitis River Watershed in Greece.

2.1.2. The Chirlesti Mudflow of the Buzau River Watershed (ROMANIA)

The landslide developed on the right side of the Buzau River at latitudes between
45.3752◦ and 45.3719◦N and longitudes between 26.3178◦ and 26.3240◦E in the WGS84
geographical coordinate system, within the structural curvature of Sub-Carpathians, along
a valley oriented SW–NE (Figure 3) [81]. The mountainous area consists of a folding flysch
aligned in the north direction. The flysch series is made up of fine sandstones that are
curbicortical, micaceous, calcareous, and gray and alternate with gray clays and marls
(they can be found in Zabrataului and the Siriului Mic valleys at Crasna), and 600 m thick
conglomerate covers the entire formation. This lithological formation dates from the Late
Cretaceous to the Paleogene Period. The region into which the upper Buzău basin drains
belongs to the crystalline-Mesozoic region, as well as the Cretaceous and Paleogene flysch
region. Late Cretaceous black shales are found in the region that extends from Siriu, crosses
the Buzău river near Crasna, and moves north. It was grafted over Eocene deposits of
gray-green claystone interspersed with thin grayish layers. The direction of the dip of the
layers is SW–NE, parallel to the direction of the flow, and there is also a dislocation line
between the Eocene and Oligocene [82]. Currently, the landslide has a length of 1300 m,
occurring between 320 and 620 m. The high slope (about 30 degrees), high water infiltration,
the foundation structure, and the composition of the sliding mass are the main factors
triggering the phenomenon [83]. Due to the major source area’s exceptionally vast extent
and highly heterogeneous rock formations (rich clays, sandy clays, sands, and marls),
water from nearby water tables and precipitation can infiltrate quickly. As a result, the
oversaturated soil starts to migrate downward as a mudflow. The accumulating colluvial
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mass is the result of shallow slides, granular topples, and medium- and deep-seated slumps.
Sheet wash, rill erosion, and surface slides all affect the colluvium [3,84].
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Figure 3. The Chirlesti mudflow of the Buzau River Watershed.

The average annual precipitation is between 800 and 1200 mm/m2 with a wet climate
from April to September. The slopes of the watershed are covered mostly by deciduous
forests (dwarf willow, rhododendron species), juniper species, pastures, meadows, and
a small proportion of ace roads and houses. The agricultural lands had 18% coverage.
The transported material has a heterogeneous, marno-clay structure and is very wet, with
the transported matter including trees uprooted from the forested slopes. In longitudinal
profiles, grain-size fractions are not very well separated, maintaining their heterogeneous
character both in catchment areas and along the flow-track [85]. The catchment and alluvial
basin, located at altitudes of 550–605 m, are covered by grassland. The water discharge
decreases the cohesion index of the soils, triggering the failure mechanism that causes
streamside landslides that can also lead to mudflows. Mineral and plant waste particles
(tree trunk remnants) can be seen on the debris fan’s surface. These come from the middle
area of the torrent, where landslides affect steep slopes. The flow channel has a considerable
length of over 700 m and a width at the top and bottom of about 30 m. For most of its
length, the channel does not exceed a width of 20 m. In terms of its appearance, the channel
has a transverse profile in the form of a “U”, with the thalweg covered over its entire
length by moving alluvial deposits. The material, which can reach a thickness of 1–3 m,
has high moisture content, especially below 480 m, where new springs appear. The debris
fan is spectacular in its development, with an altitude range of 320–350 m, a length of
roughly 200 m, and a width of 250–300 m. As it slides from the top, the majority of the
transported material is stored here. The material in the spreading cone is also affected by
the upper part through surface washing and even surface erosion, leading to the appearance
of gutters and small ravines that can exceed 1.5 m in depth. Its mobility is significant,
being mainly influenced by the amount of rain falling and temperature variations. The
velocity of the mudflow’s motion has seasonal differences. The spring–summer interval
records the most intense dynamics (due to intense precipitation) and varies between 5 and
17 m/month with a mean value of 9.2 m/month, while winter is the most stable season,
with a mean displacement velocity of 4.8 m/month [85]. Extreme temperatures promoted
water evaporation (drought), which generated more cracks in the soils at the Chirlesti
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mudflow site in Romania. Then, surface runoff water infiltrated deep into the soil through
these cracks, causing rapid soil saturation and decreasing soil particle cohesiveness [86].

2.1.3. The Sirtoba Landslide Site of the Arhavi River Watershed (TURKEY)

The case study area of the Sirtoba landslide site is located southeast of Sirtoba Village
in the Arhavi River Watershed, Arhavi Province, Turkey, at latitudes between 41.2967◦ and
41.3034◦N and longitudes between 41.3932◦ and 41.4022◦E in the WGS84 geographical
coordinate system (Figure 4). The pilot area is 31.83 ha in size. The terrain has a very
steep slope, with elevations ranging from 489 to 689 m above sea level. The distinctive
typographic elevation differences reveal a variety of floristic habitat compositions. The
forested lands include Anatolian chestnut (Cestanea sativa Mill.), bearded alder (Alnus
glutinosa subsp. barbata (C.A. Mey. Yalt.), Oriental beech (Fagus orientalis Lipsky.), Oriental
spruce (Picea orientalis L.), hornbeam (Carpinus orientalis), Scots pine (Pinus sylvestris L.),
and sycamore (Platanus orientalis) trees. The main crop species in the agricultural areas
are tea (Camellia sinensis L. Kuntz.), pears (Pyrus sp.), hazelnuts (Corylus avellana L.), kiwis
(Actinidia sp.), apples (Malus sp.), and grapes (Vitis vinifera L.). The total area of the case
study site is made up of 46.1% forest, 53.3% grassland and agricultural land, and 0.6%
residential areas [87]. The geology of the research site consists of volcanic agglomerates and
sedimentary rocks belonging to the geological Rhodope-Pontid Fragment. The geologic
formations date from the Late Cretaceous Period to Quaternary limestone deposits [88].
Ultisol, inseptisol, and podzol soils are the predominant soil types in the region. The region
experiences a climate that is typical of the Black Sea, which is very humid and heavily
influenced by air masses carried by the sea. Data from the Arhavi Weather Station for
33 years (1985–2018) show that the mean annual temperature is 13.6 ◦C, with July being
the hottest month (22.1 ◦C) and January being the coldest (6.5 ◦C) [89].
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The landslides in the case study were triggered by heavy rainfall (136 mm in six
hours) on 22 July 2021. The rain fell at a rate of 61 mm during the first hour of the rain
event [89]. Within the study area, three major and one minor landslide with lengths of
117, 88, 75, and 23 m and widths of 33, 29, 13, and 15 m occurred during this event. The
landslides were initiated as translational slides and then became debris avalanches [3]
with liquefiable material’s cohesion loss due to undrained loading simultaneously after the
extreme rainfall. The one in the tea garden remained a translational slide and accumulated
as a colluvial mass near the road–stream junction. The landslides ranged in depth from 2
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to 5 m. The flows ended up in Sirtoba Stream and then were washed away by rainwater.
While allowing the clogged road to be used, some sediments on the deposited area were
formed. Because of the steep slope, the landslides did not deposit sediments in a cone.
Rather, the sediments ended up in streams and washed away.

2.2. Hardware, Software, and Methodology
2.2.1. UAV Flight Planning and Acquisition of UAV Imagery

In order to monitor and map the streamside landslides, high-tech UAVs were utilized,
alongside photogrammetric software, to produce high-resolution (RGB) orthophoto maps,
while sophisticated mapping was performed in GIS analysis software. The UAVs that
we used were the DJI Mavic 2 Pro (in Greece), the DJI Mavic Mini 2 (in Romania), the
DJI Matrice 300 RTK, and the DJI Air2S (in Turkey). The DJI Mini 2 has a 1/2.3′′ CMOS
(complementary metal–oxide–semiconductor) sensor with a 12MP camera. The DJI Matrice
300 RTK (M300) has an integrated H20T camera system housing a 12-megapixel (MP) red,
green, and blue (RGB) wide-angle camera with a focal length of 8 mm, a 20 MP zoom
camera with 23× hybrid optical zoom capabilities, a 640 × 512 pixel radiometric thermal
camera, and a 1200 m laser rangefinder. A Hasselblad L1D-20c camera with a 20 MP
1′′ CMOS sensor is included with the DJI Mavic 2. The DJI Air2S has a one-inch 20 MP
CMOS sensor with a 22 mm equivalent lens [90]. Because of its size, the M300 was used
for mapping streamside slopes in windy conditions, and the Air2S was used for mapping
streams at a height of 2-3 m above water level. Then, the acquired images from M300
were used for orthomosaicking and DSM generation. The imagery taken by the Air2S was
also used to delineate the stream network under the shading trees. Noontime (around
11:00–14:00) was selected for taking UAV images to reduce shadow effects. Although the
period when the leaves fall is considered the best, allowing visibility under the canopy in
forested riparian zones, in this study, the period with leaves was chosen in order to assess
whether streamside landslides are able to be captured and delineated in such vegetated
conditions. The flight altitude was set to 100, 150, and 124 m for Lefkothea, Chirlesti, and
Sirtoba, respectively, in order to obtain uniform ground coverage for each flight (Table 1).
Flight was avoided on windy days (>10 m/s). To ensure a 2–3 cm ground sampling distance
(GSD), flight planning was set to obtain 80 percent overlap and 70 percent side-lap by using
the polygon 2D mapping flight plan option. The flights were conducted on 1 July 2021
in Romania, on 1 September 2022 in Greece, and on 13 August 2022 in Turkey (Table 1).
A single UAV image’s footprint on the ground was 141 × 94 m for Lefkothea in Greece,
69 × 52 m for Chirlesti in Romania, and 304 × 228 m for the Sirtoba site in Turkey.

Table 1. Characteristics of the UAV surveys flown over Lefkothea in Greece, Chirlesti in Romania,
and Sirtoba in Turkey.

Site Name Image Date UAV Flight
Height (m)

Area
Covered(km2) Strips Overlap(%) Side-

Lap (%)

UAV Image
Footprint on
Ground (m)

Number of
Images

Lefkothea, GR 1 September 2022 DJI Mavic 2
Pro 100 0.325 11 80 70 141 × 94 474

Chirlesti, RO 1 July 2021 DJI Mavic
Mini 2 150 0.131 4 80 70 69 × 52 104

Sirtoba, TR 13 August 2022 DJI Matrice
300 RTK 124 0.318 7 80 70 304 × 228 207

2.2.2. Topographic Correction of Aerial Products

Data from GPS-GNSS (Global Positioning System/Global Navigation Satellite System)
are essential for the image georeferencing process and provide highly accurate horizontal
and vertical positioning for UAV products [91] in WGS84 geographical coordinates. Ob-
taining high accuracy in the finished products requires a density of 1 GCP/200 m2 [92].
The GPS-GNSS JAVAD TRIUMPH-1 receiver (San Jose, CA, USA) was used to include
six (6) physical spots as GCPs for the Greek site (Table 1). The geospatial accuracy of the
orthoimagery, rated at an XY RMSE of 0.1353 m and Z RMSE (DSM) of 0.9639 m accuracy,
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was ensured using the 6 GCPs. The GCPs for the Chirlesti mudflow site in Romania were
captured with a Leica TCA1103 total station with 4 GCPs (Table 1). The XY RMSE for
orthophotos was 0.1498 m, and the Z RMSE for the DSM product was 0.7985 m (Table 2).
There was no GPS base station to be used to correct signals for data gathered by the GPS
receivers in the Chirlesti and Lefkothea sites. Real-Time Kinematic (RTK) technology [93]
provided high-precision image georeferencing in the Turkish case study. Before the flight
plan, the satellite navigation geodetic system’s “base station” was installed. The DJI Matrice
300 RTK’s GNSS antenna served as a “rover.” Using a radio-telemetry system, the RTK
system enabled the continuous transmission of GNSS corrections to the UAV, ensuring the
real-time recording of the coordinates with an XY RMSE of 0.0768 m (orthophoto) and a Z
RMSE (DSM) of 0.9813 m accuracy in the flight controller’s memory (Table 2) [94]. We did
not need to employ coordinate post-processing kinematic (PPK) technology, which would
have required more time because the survey sites were small [95].

Table 2. The root-mean-square error (RMSE) of the orthophotos (XY) and DSMs (Z) generated with
Pix4DMapper during the photogrammetric process using the available GCPs.

Site Name Image Date Software GPS-GNSS
Receiver GCPs

Orthophoto
Resolution

(cm/pix)

XY RMSE
(m)

Z RMSE
(m)

Lefkothea, GR 1 September
2022

Pix4D ver.
4.4.12

JAVAD
TRIUMPH-1 6 2.56 0.1353 0.9639

Chirlesti, RO 1 July 2021 Pix4D ver. 4.6.4 Leica TCA1103 4 3.08 0.1498 0.7985
Sirtoba, TR 13 August 2022 Pix4D ver.4.5.6 Built-in RTK Built-in RTK 3.84 0.0768 0.9813

2.2.3. Photogrammetric Workflow

The Pix4DMapper software package (Lausanne, Switzerland) was selected to generate
the orthomosaic and digital surface model (DSM) of each case study site. Pix4DMapper is
powerful well-established commercial Structure-from-Motion (SfM) software used world-
wide [96]. With the aid of SfM technology, which is based on computer vision, photogram-
metric reconstruction can be performed solely from RGB images, and using overlapping
images, 3D information can be calculated without the need for prior knowledge of the cam-
era’s surveyed reference points, calibration, or location and orientation in the scene [97–99].
The raw images were carefully inspected for any unwanted blurry images before any pho-
tometric processing. The UAV’s GPS data and IMU parameters were used to externally and
internally orient the high-resolution imagery taken. The raw images were automatically
tied to points to obtain the initial aerotriangulation [100]. In order to reduce the processing
time, the intensity of the dense cloud was set to medium. Limits for the key and tie points
were set at 40,000 and 4000, respectively. An adaptive camera fitting model was used for
image matching. Then, dense point clouds were generated, followed by the mesh model
and the texture. All of the parameters were set to medium for this workflow. The DSM
was generated using the dense cloud points with Z RMSEs of 0.9639, 0.7985, and 0.9813 m
for the Lefkothea, Chirlesti, and Sirtoba study sites, respectively (Table 2). Using the DSM
and texture, the orthomosaic of each stream segment was generated at 2.56, 3.08, and
3.84 cm spatial resolution for each study site (Table 1). Furthermore, hillshade and aspect
maps, based on the DSM as input, were generated in the spatial analysis toolbox in ArcGIS
10.6. Figures 5–7 depict the orthomosaic, DSM, hillshade, and aspect maps for each site,
respectively (Lefkothea in Greece, Chirlesti in Romania, and Sirtoba in Turkey).
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2.2.4. Image Analysis and Classification

Initially, manual delineation was performed in ArcGIS 10.6 (Redlands, CA, USA) in
order to compare the results produced by the manual and automatic procedures. The
combination of the above datasets was critical in order to identify the affected areas even in
shadowed areas. The only limitation recorded was in areas covered by recent vegetation.
The manual delineation of landslide deposits is the most common approach in the remote
sensing community [101]. During this procedure, an experienced operator (an expertly
trained geologist) identified the landslides by zooming and panning the three orthophotos
and delineating the polygon boundaries, while a second experienced operator confirmed
the uncertain boundaries (expertise in remote sensing photogrammetry). The orthomosaic’s
bands, DSM, slope, and hillshade layers, which were derived from the DSM, were utilized
as background datasets in order to map the boundaries of the landslides. The DSM data
were also used to investigate the landslide depths in each study site. This was accomplished
by evaluating the landslide cross-sectional profiles.

The ArcGIS “Segment Mean Shift” (SMS) tool under the Segmentation and Classifica-
tion toolbox was utilized in order to extract streamside severe erosion and landslide events
at each study site. The input layers used in this SMS analysis were the orthomosaic’s red,
green, and blue bands, DSM, slope, and hillshade layers. Equal weighting was applied
to each input layer, regardless of the units that were used in each layer [102]. The initial
values were set to a spatial detail of 15, a spectral detail of 15.5, and a minimum segment
size in pixels of 20. These values were selected in order to automatically identify feature
objects/segments in the orthomosaic of each case study by grouping adjacent pixels to-
gether that have similar spectral and spatial characteristics. To make classification simple,
the segmentation method eliminates the speckles and groups small pixels into substantial
continuous areas.

The next process included the PBIA methods to automatically map the streamside
landslides. The traditional PBIA approach assigns a land use/land cover class to a pixel
that has the same size and shape [103]. We used ArcGIS’s “Train ISO (iterative self-organizing)
Cluster Classifier” tool under the Segmentation and Classification toolbox [104] to classify
land cover types, including landslides within each streamside (Figure 8). The orthomosaic
dataset was utilized to perform automatic classification for the PBIA method. The spectral
bands (RGB) of orthomosaic images for each site were chosen as input bands for PBIA
processes using the ISO Cluster classifier. The maximum number of classes was set to 15,
with a maximum number of iterations of 20. The maximum number of cluster merges per
iteration was set to 5, and the maximum merge distance was set to 0.5. The minimum
number of samples per cluster was set to 20 with a skip factor of 10. There were no
additional raster files included in the process. The output classifier definition files were
generated for the pixel-based image analysis and the object-based image analysis. The PBIA
uses the objects’ spectral (band) characteristics [105] to classify land cover types. In the
Sirtoba landslide–Arhavi River pilot area, the land cover types were divided into forests, tea
gardens, hazelnut gardens, shrubs, and pastures. For the Chirlesti mudflow–Buzau River
Watershed and Lefkothea–Aggitis River Watershed, the land cover types were divided
into forested areas, agricultural land, urban development, and pasture lands. The spatial
variation in various land covers in high-resolution images is not taken into account by
pixel-based techniques used for moderate- and low-resolution imagery [106]. Instead, these
techniques ignore nearby pixels that are a part of the same land cover. The pixel itself does
not hold any neighboring or surrounding concept of an object. On the other hand, the
OBIA method divides an image into segments by accumulating small pixels into vector
objects [107,108]. These objects vary in size and shape. Because they are vector objects,
there is no need for a vectorization process. Using their spectral, geometrical, and spatial
properties (geometry, area, color, shape, texture, adjacency, etc.), these vectors can be used
to classify images into any land cover class. Since the weighted OBIA analysis can be
performed on any GIS layer, it gives users unlimited analysis options to choose from. For a
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thorough review of OBIA methods on remote sensing applications, an extensive review
with references can be found in [107].
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The ArcGIS software has been incorporated into OBIA algorithms for segment mean
shift (SMS) and classification (SVM classifiers, random forest, Maximum Likelihood, and
ISO Cluster) [102]. Then, the segmented images (SMS products) were classified by using ISO
Cluster Unsupervised Image Classification. This tool enables automatic classification based
on statistical variances in the spectral properties of the pixels (the computer determines
which classes are present in the image). In each segmented image that resulted, 15 classes
were selected as a threshold value, with a sample interval of 10 and a minimum class size
of 20. These numbers were selected after several trials as the best option for separating the
different colors representing distinct features in the images.

When the population standard deviation is unknown, Student’s t-test analysis can be
used as a statistical method for evaluating assumptions about the mean of a small sample
drawn from a normally distributed population [109]. Since we have only four classifications
for each case study site, Student’s t-test analysis was employed to determine whether there
were any statistical variations among the classifications. All statistical analyses were
performed using IBM’s SPSS 19 Statistical software (IBM Corp., Armonk, NY, USA) for
each study site.

3. Results
3.1. The Results of the Lefkothea Site

The results of manual delineation from orthomosaic imagery for the Lefkothea site
in Greece are depicted in Figure 9a. The areas were categorized into 15 different classes.
The areas of interest (landslide) belonged to categories 13, 14, and 15. By using merg-
ing operations during the classification stage, image objects from the same classes were
combined to accurately represent the shape of the landslides. After the segments were
created during the segmentation process, the second classification stage was applied to the
SMS dataset to separate classes (Figure 9b). After the development of the PBIA-based and
OBIA-based landslide models (Figure 9c,d), it is evident that there are differences among
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the four methodologies, as shown in Table 3. The majority of the landslides are located in
the southeast, northwest, and west (Figure 10).
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Figure 9. The results concerning Lefkothea’s torrent in Greece captured by the drone flight on
1 September 2021: (a) boundaries of affected area, manually digitized; (b) segment mean shift (SMS)
algorithm; (c) ISO Cluster unsupervised classification (based on the orthomosaic), and (d) ISO Cluster
unsupervised classification (based on the SMS).

Table 3. The statistics produced by each method for the Greek site.

Site Name Perimeter
(m)

Area
(m2)

Diff_Per
(m)

Diff_Per
(%)

Diff_
Area
(m2)

Diff_
Area
(%)

P/A
Ratio

Intersected
Perimeter

(%)

Intersected
Area
(%)

Lefkothea_GR_LC_MAN 5490 49,461 0 0 0 0 0.111 100 100
Lefkothea_GR_LC_OBIA 5062 48,672 428 −8 789 −82 0.104 22 50
Lefkothea_GR_LC_PBIA 5242 36,663 247 −8 12798 −826 0.143 12 25
Lefkothea_GR_LC_DSM 4745 36,512 745 −814 12949 −826 0.130 10 16



Remote Sens. 2023, 15, 1006 15 of 30

Remote Sens. 2023, 15, 1006 15 of 32 
 

 

  
(c) (d) 

Figure 9. The results concerning Lefkothea’s torrent in Greece captured by the drone flight on 1 

September 2021: (a) boundaries of affected area, manually digitized; (b) segment mean shift (SMS) 

algorithm; (c) ISO Cluster unsupervised classification (based on the orthomosaic), and (d) ISO 

Cluster unsupervised classification (based on the SMS). 

 

Figure 10. Outlining the extent of landslide boundaries using the four classifications: (a) overall 

extent of four classifications; (b) eroded land next to the road; (c) and (d) gullied and eroded 

translational zones; (e) deposition zone of landslide debris in the Lefkothea case study site in 

Greece. 

  

Figure 10. Outlining the extent of landslide boundaries using the four classifications: (a) overall
extent of four classifications; (b) eroded land next to the road; (c,d) gullied and eroded translational
zones; (e) deposition zone of landslide debris in the Lefkothea case study site in Greece.

The SMS algorithm overestimated the affected areas, including agricultural fields that
had a similar color to almost-flat areas. The specific dataset produced similar uncertainties
to the ISO Cluster. The results showed that the manual classification based on the length
of the landslide site was underestimated by the DSM and ISO Cluster algorithms and
overestimated for the area of the Lefkothea site (Table 1). The test results showed that
there was a statistical significance (p < 0.05) among the four classifications for the Lefkothea
study site.

For the intersected areas, 50% of the OBIA classification area was covered by manual
delineation, followed by 25% for PBIA and 16% for SMS classifications (Table 3). The same
pattern was followed by the intersected perimeters at 22%, 12%, and 10% for OBIA, PBIA,
and SMS classifications, respectively.

3.2. The Results of the Chirlesti Site

The ISO Cluster classifier used orthomosaic and segmented images for the Chirlesti
mudflow site as input rasters. The maximum number of classes was limited to 15, with a
maximum of 20 iterations. In each iteration, the maximum number of clusters to merge
was set at 5, with a maximum merge distance of 0.5. With a skip factor of 10, the minimum
number of samples per cluster was set at 20. The output classifier definition files for pixel-
based image analysis and object-based image analysis were created. The output maps for
the Chirlesti site in Romania are depicted in Figure 11. There are differences among the four
methodologies in both events that are presented in Table 4. The segmentation parameters
applied to the Chirlesti site were the same as those applied to the Greek Lefkothea site. The
ISO Cluster algorithm underwent the same procedures. The results showed that the manual
classification based on the orthoimage was underestimated by the DSM and ISO Cluster
algorithms for the perimeter and the area of the Chirlesti mudflow site (Figure 12). The
area of the mudflow site was underestimated by 8% by pixel-based ISO Cluster algorithms
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(Table 4). For the Chirlesti mudflow study site, Student’s t-test analysis revealed a statistical
significance (p < 0.05) among the four classifications in both the perimeter and area. Because
degraded and deposited areas may be better seen in DSM images than in the orthoimage
(Figures 6c and 12), the DSM-based classification of the mudflow site differed from the
manual digitization by 91% (Table 4).
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Figure 11. The results concerning the Chirlesti mudflow in Romania captured by the drone flight
on 1 July 2021: (a) boundaries of affected area manually digitized; (b) segment mean shift (SMS)
algorithm; (c) ISO Cluster unsupervised classification (initial based on the orthomosaic); and (d) ISO
Cluster unsupervised classification (initial based on the SMS).

Table 4. The statistics produced by each method for the Romanian site.

Site Name Perimeter
(m)

Area
(m2)

Diff_Per
(m)

Diff_Per
(%)

Diff_
Area
(m2)

Diff_
Area
(%)

P/A
Ratio

Intersected
Perimeter

(%)

Intersected
Area
(%)

Chirlesti_Mudflow_MAN 1103 7670 0 0 0 0 0.144 100 100
Chirlesti_Mudflow_OBIA 1176 7507 −73 7 163 −2 0.157 5 5
Chirlesti_Mudflow_PBIA 1806 7069 −702 64 601 −8 0.255 18 9
Chirlesti_Mudflow_DSM 1344 14,655 −241 22 −6985 91 0.092 18 48
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Figure 12. Outlining the extent of landslide boundaries using the four classifications: (a) overall
extent of four classifications; (b) the head zone of the mudslide with trees shows the exposed topsoil
is obscured; (c) translational zone between erosion and deposition of the mudflow debris; and
(d) depositional zone of the mudflow debris in the Chirlesti mudflow case study site in Romania.

For the intersected areas, 5% of the OBIA classification area was covered by manual
delineation, followed by 9% for PBIA and 48% for SMS classifications (Table 4). The
intersected perimeters were 5%, 18%, and 18% for OBIA, PBIA, and SMS classifications,
respectively (Table 4).

3.3. The Results of the Sirtoba Site

The ad hoc and final segmentation parameters used at the Sirtoba site were the same
as those used at the Chirlesti mudflow site in Romania and the Lefkothea site in Greece.
In addition to the ISO Cluster classification technique used for the other two sites, the
region-grouping algorithm was used to fine-tune the classification for the Sirtoba site in
Turkey. The classification outputs for the Sirtoba site are captured in Figure 13. For the
ortho-based image analysis, the automatic unsupervised classification technique produced
13 classes (Figure 13c), and for segment-mean-shift-based image analysis, it produced 11
classes (Figure 13d). To remove speckles caused by plants within the landslides, classes 11,
12, and 13 were merged. In a similar manner, classes 9, 10, and 11 were combined for the
OBIA-based classification. Similar disparities existing between the four approaches for the
two situations are also noted in Table 5. The results showed that the manual classification
based on the orthoimage was underestimated by the DSM and ISO Cluster algorithms for
the perimeter of the Sirtoba Landslides (Figure 14). On the other hand, the landslide area
was overestimated by pixel-based ISO Cluster algorithms by 27% (Table 5). According to
Student’s t-test analysis, the four classifications for the Sirtoba Landslide research site have
a statistical significance (p < 0.05) in terms of both the perimeter and area. Figure 7d depicts
the locations of the landslides, which occurred on the terrain facing north, northeast, and
east. A detailed view of the landslide boundary extent determined by the four distinct
classifications in the orthophoto image can be seen in Figure 14. Field observations revealed
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that the soil in these regions is almost always moist. Following a significant downpour,
these places are excessively susceptible to landslides.
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Figure 13. The results concerning Sirtoba in Turkey captured by the drone flight on 13 August
2022: (a) boundaries of affected area, manually digitized; (b) segment mean shift (SMS) algorithm;
(c) ISO Cluster unsupervised classification (initial based on the orthomosaic); and (d) ISO Cluster
unsupervised classification (initial based on the SMS).

Table 5. The statistics produced by each method for the Turkish site.

Site Name Perimeter
(m)

Area
(m2)

Diff_Per
(m)

Diff_Per
(%)

Diff_
Area
(m2)

Diff_
Area
(%)

P/A
Ratio

Intersected
Perimeter

(%)

Intersected
Area
(%)

Sirtoba_TR_LC_MAN 716 4018 0 0 0 0 0.178 100 100
Sirtoba_TR_LC_OBIA 1412 3945 −696 97 73 −2 0.358 27 26
Sirtoba_TR_LC_PBIA 1251 2940 −535 75 1078 −27 0.425 14 19
Sirtoba_TR_LC_DSM 949 5264 −234 33 −1246 31 0.180 33 40
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Figure 14. Outlining the extent of landslide boundaries using the four classifications: (a) overall
extent of four classifications; (b) head and toe zones of the landslide with a road passing in the middle;
(c) an intersectional zone at roads, streams, and landslides between erosion and deposition of the
landslide debris; and (d) fast-growing plants in the depositional zone of the landslide in the Sirtoba
case study site in Turkey.

For the intersected areas, 26% of the OBIA classification area was covered by manual
delineation, followed by 19% for PBIA and 40% for SMS classifications (Table 5). The same
pattern was followed by the intersected perimeters at 27%, 14%, and 33% for OBIA, PBIA,
and SMS classifications, respectively (Table 5).

4. Discussion

Given the variety of shapes and sizes that landslides can take, detecting landslides
is still a difficult task. Due to tree shadows, automatic classifications underestimated the
extent of the landslide boundaries, particularly at the Chirlesti mudflow site in Romania.
The riparian vegetation along the streams has covered transported sediments, which were
only discovered in situ at the Lefkothea site in Greece and the Sirtoba site in Turkey. The
main triggering factor for the landslide in each study area was extreme rainfall. This is
true for most of the studies we cited in the Introduction section [4,5,12,88]. For instance,
the Sirtoba site in Turkey received 160 mm of precipitation within a 6 hr period during the
rainfall event on July 22, 2021. In order to see the variation in the runoff volume for each
vegetation type in the Sirtoba site, we installed surficial erosion runoff plots. Through these
runoff plots, we collected and measured the runoff water on the forested lands, tea garden
fields, hazelnut garden fields, and grasslands of the Arhavi River Watershed, where the
Sirtoba landslide site is located. The preliminary data from December 2021 to December
2022 showed that the runoff volumes were 0.9 L/day for forested lands, 1.3 L/day for tea
gardens, 6.7 L/day for grasslands, and 15 L/day for hazelnut gardens. This demonstrated
that trees and tea plants regulate the surficial runoff water. It was also observed that in
the case of any extreme rain events, the leaves and roots of tea plants let the excess water
infiltrate into the soil rapidly, causing saturation and triggering landslides.
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Another triggering factor was the steep slopes of the study sites. Through their root
systems, the extensive tree canopy was expected to preserve the soil and prevent landslides.
This was not the case on very steeply sloped terrains [110]. As a result, the Sirtoba site
saw numerous landslides during a single heavy rainfall event. The shallow soil depth
and the shale layer forming the bedrock contributed to triggering the landslides. This
specific study focused on streamside landslides, which differ from other landforms, as they
occur in and are connected to the stream network and, in most cases, are generated by
the force of water in vulnerable soils under high slopes [111]. The soil moisture content
on the northern aspects (north, northeast, and northwest) is more than that on other
aspects [112–115]. This makes the soil on the northern aspects more saturated than on
other aspects. Furthermore, it increases the probability of a landslide. The authors of [116]
had similar findings in their study, which they conducted on hillslopes in the Black Soil
(Mollisols) Area of Northeast China.

The depth of the topsoil varies between 1 and 6 m at the Sirtoba landslide site in
Turkey. A shale layer begins underneath the topsoil. Due to heavy downpours in the study
area, trees in the forested lands and tea plants in the tea garden slow the runoff water and
let it drain into the soil. The shale beneath forested lands and tea gardens collects drained
water as a thin layer between the upper soil layer and the shale, causing the upper soil layer
to move downward. At the Chirlesti site in Romania, the same shale formation existed
along the mudflow. After the extreme rainfall at the two study sites, we believe that the
shallow shale formation is the second contributing factor.

Landslide mapping via OBIA and PBIA methods has been applied previously, e.g.,
in Hokkaido province of Japan, by also using DEMs and vegetation indices (e.g., NDVI)
to detect changes between satellite images taken on different dates and by comparing the
vegetation and elevation products [117]. The NDVI index is a worldwide known vegetation
index that can be used in dense vegetated areas to spot and classify landslides [118]. The
specific index was utilized in a previous step by using free satellite images in order to
highlight the places of interest (not presented here), which were further investigated with
the current UAV flights in greater resolution.

The UAVs used were not equipped with a near-infrared camera to acquire the NDVI
index. In addition, a full-scale object-level change detection method (segmentation and
classification) has been used effectively and efficiently for change detection and the ex-
traction of artificial objects with rich structure information from multiple images of the
Wenchuan Earthquake area affected by landslides [119]. Generally, semi-automatic or
fully automatic UAV-based photogrammetry has been utilized to detect longitudinal and
transverse cracks (e.g., on the road or the railway network) and assess their severity in
landslide areas [95,120,121]. These models (OBIA and PBIA) underwent testing at the
chosen landslide locations in Greece, Romania, and Turkey. The models offered different
results for each of the three areas, per the accuracy assessment findings. This difference was
primarily caused by the fact that many landslide bodies were hidden by vegetation and
shadowy areas. In order to minimize these effects, the classified images were aggregated
by using an 8x8-cell region-grouping algorithm under the Spatial Analyst Tool in ArcGIS
10.6. Additionally, some landslides were cut by the forested road network in the Turkish
site (Sirtoba). During the landslide events, all roads within the affected area were moved
downward. These roads were reconstructed, and the supporting walls were built to prevent
upper slope mass movements. The final result was different (fewer classes produced in
some of the case studies) due to the colors contained in each orthomosaic. All of these
factors affected the accurate size of the area produced in each method. For all case studies,
the OBIA model provided the best results, with values that were closer to those obtained
by manual delineation (only a 2% difference in area size).

Temporal variation in vegetational growth is one of the limitations in identifying and
delineating the extent of landslides [66,76]. It is much easier to identify the landslide’s
boundary immediately following the landslide event using UAVs and sediment and mud
deposits on vegetation. In Turkey’s Sirtoba site, the vegetation covered the affected area
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within a month (Figure 15a). The ability of the vegetation to cover the landslide area at the
Lefkothea site in Greece and the Chirlesti site in Romania, on the other hand, took longer
than at the Sirtoba site in Turkey. This is one of the reasons why the perimeter/area ratio at
the Sirtoba site is higher than at the Lefkothea and Chirlesti sites (Tables 3–5).
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Using the Minimum Bounding Geometry Toolbox in ArcGIS, the width and length of
each landslide in the case study areas were estimated. For comparison, the average values
for each classification type were subtracted from the manual classification results (Table 6).
According to the findings depicted in Table 6, the Lefkothea and Sirtoba sites’ average
widths varied for each approach. Surprisingly, all methods except the one that used DSM
data to obtain results indicated the same width at the Chirlesti mudflow site. This might be
attributable to a DSM image’s roughness property, which can more accurately depict the
eroded and deposited areas than other techniques [59,60,122]. Table 6 shows the W/L ratio
results for the four different classifications in each study site. Three out of four classifications
showed an average W/L ratio of 0.450 at Sirtoba in Turkey. Small width/length ratios are
indicators of thin-shaped landslides that have a typical mix of translational debris slides and
debris avalanches on steep slopes. The W/L ratio for manual delineation at the Sirtoba site
was lower than in other classifications because the landslides reached streams through the
trees. Because of the tree cover, the ISO Cluster classification and SMS algorithms failed to
detect those routes. The detection of those landslides was possible with manual delineation
and in situ observations. The Chirlesti site followed the same thin-shaped mudflow and
had the longest landslide among the three study sites. The W/L ratio was higher in the
segmented classification than in the other classifications. It showed a wide (elongated)
mudflow pattern. With the help of the DSM and hillshade images, the cone (deposited area)
was clearly visible and distinguishable from its surroundings (Figures 6c and 12d). The
Chirlesti mudflow site is a continuous phenomenon that started in 1953 [82]. The detailed
shape and characteristics of the mudflow can be found in Lahousse et al. [82]. The W/L
values were similar for all classifications at the Lefkothea site. They were higher than the
W/L values at the Chirlesti site, but lower than those at the Sirtoba site.

The positional accuracies of GPS data embedded within each UAV image and the
GCPs used to create orthophotos and DSMs might slightly affect the areas and lengths
determined using the four classifications. This can be attributed to the nature of GPS signal
errors introduced by atmospheric delays (ionospheric effects), space weather, ephemeris
effects, and so on [93,123]. In normal conditions, GPS signals have 3–15 m positional errors
in XY and 10–20 m in the Z-direction when GPS satellites’ selective availability (SA) feature
is turned off (an intentional degradation of public GPS signals). With the survey-grade GPS
receivers we used in the Lefkothea and Chirlesti study sites, we were able to reduce these
Z-directional errors to close to one meter and the XY-directional errors to less than 15 cm.
Even with the help of real-time kinematic processing (RTK, CORS, or WAAS), these errors
can be reduced to centimeter accuracy [31,93]. In the Chirlesti, Lefkothea, and Sirtoba
sites, the UAV images were taken at an oblique angle. Therefore, even with differential
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GPS data applied, the off-nadir images might be linked to the Z errors introduced in our
DSM products [79,82,124]. This was the reason why our Z errors in orientation in GCPs
were close to 1 m. Agüera-Vega et al. [124] reported that DSM positional errors were
mostly affected by the UAV’s flight altitude and the number of GCPs rather than the terrain
morphology. They found no statistical significance among the XY RMSE, flight altitude, or
terrain morphology. They used the same number of GCPs as we did in our study.

Table 6. Statistics were produced for each landslide’s width, length, and width/length ratio for the
three case studies. The differences were between control (manual) and the other classifications. The
numbers were rounded to the nearest one.

Site Name Width
(m)

Length
(m)

Diff_Wid
(m)

Diff_Wid
(%)

Diff_Len
(m)

Diff_Len
(%) W/L Ratio

Lefkothea_GR_LC_MAN 38 111 0 0 0 0 0.342
Lefkothea_GR_LC_OBIA 22 67 −16 −42 −44 −40 0.328
Lefkothea_GR_LC_PBIA 32 94 −6 −16 −17 −15 0.340
Lefkothea_GR_LC_DSM 38 93 0 0 −18 −16 0.409

Chirlesti_Mudflow_MAN 61 460 0 0 0 0 0.133
Chirlesti_Mudflow_OBIA 60 445 −1 −2 −15 −3 0.135
Chirlesti_Mudflow_PBIA 61 460 0 0 0 0 0.133
Chirlesti_Mudflow_DSM 109 461 48 79 1 0 0.236

Sirtoba_TR_LC_MAN 22 76 0 0 0 0 0.289
Sirtoba_TR_LC_OBIA 20 44 −2 −9 −32 −42 0.455
Sirtoba_TR_LC_PBIA 14 32 −8 −36 −44 −58 0.438
Sirtoba_TR_LC_DSM 28 61 6 27 −15 −20 0.459

The spatial intersections (overlaps) of the classification with manual delineation varied
at each study site. The largest area of agreement between manual and OBIA classifications
was 50% for Lefkothea, 26% for Sirtoba, and 5% for the Chirlesti site. The SMS and manual
classification agreement at intersected areas were 48% for Chirlesti, 40% for Sirtoba, and
16% for the Chirlesti study site. At the Lefkothea site, there was a 25% intersection between
manual and PBIA classifications. It was 19% for Sirtoba and 9% for the Chirlesti site
(Tables 3–5). There was no relation between the W/L ratio and intersected areas either. One
could have expected that the percent difference in area and the percent intersected area
would add up to 100 percent. This was not the case for these study sites. This could be
explained by stating that spatial intersections and non-spatial area differencing are not the
same and cannot be comparable.

5. Conclusions

In the context of this study, manual landslide delineation, a segmentation process, and
two mapping models (OBIA and PBIA) were created based on the characteristics of each
selected landslide. The case studies under analysis have had significant impacts on the
affected areas, which have been altered as a result, including urban settings, forested areas,
and agricultural fields (Figures 16–18). The comparison highlighted differences among the
various methodologies on the affected areas and perimeters. Among the four classifications,
the OBIA produced the best intersection across all study sites (area-wise, 2% deviation from
the control points). The classification model with the lowest performance was the PBIA. The
only classification that was able to detect the debris fan at the Chirlesti mudflow site was the
SMS classification using the hillshade image. The results indicated that the terrain (slope),
the aspect of the slope, the shape of the landslide, the vegetation cover, and the soil/parent
material are highly implicated in the landslide phenomena and their future evolution.
The creation of preventative streamside landslide buffers will aid in mitigating the effects
of similar streamside events in the Black Sea and the Mediterranean, as well as those in
areas already mentioned above [125]. The best ways to prevent or reduce adverse effects
on both the urban environment and the natural environment are to combine gray-green
adaptation, preventive, and mitigation methods (a combination of targeted nature-based
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solutions with appropriate engineering techniques) [126,127]. Furthermore, knowledge
about the subsurface properties would help to define the spatial occurrence and extent of
the landslides [128]. As for future directions, frequent three-dimensional monitoring via
UAV-based photogrammetry (including oblique imagery for the Z-axis) would enable us to
calculate the volume of the transported material. This could be further achieved by also
implementing field monitoring, including alert sensors to capture the events immediately
(as in many cases, vegetation can cover previously unrecorded landslides).
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Figure 16. The impacts of the Chirlesti mudflow (a) in an urban area where soil covered the building
up to the roof; (b) forested area along the streambank that collapsed.

Remote Sens. 2023, 15, 1006 25 of 32 
 

 

 
(a) 

  
(b) (c) 

Figure 17. The landslides were triggered by a heavy rainfall event on 22 July 2021 in Sirtoba, Arhavi, 

Turkey: (a) a translational landslide within a tea garden near Sirtoba; (b) a debris avalanche (blue 

arrow) within a forest in near Sirtoba that affected the road network; (c) a relatively small transla-

tional shallow landslide (yellow arrow) within a pasture near Sirtoba. 

Tea plants 

Figure 17. The landslides were triggered by a heavy rainfall event on 22 July 2021 in Sirtoba, Arhavi,
Turkey: (a) a translational landslide within a tea garden near Sirtoba; (b) a debris avalanche (blue
arrow) within a forest in near Sirtoba that affected the road network; (c) a relatively small translational
shallow landslide (yellow arrow) within a pasture near Sirtoba.
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Figure 18. The Chirlesti mudflow site in Romania: (a) Daniel C. Diaconu standing on mudflow
debris that was deposited on a nearly flat surface, and the road below was threatened near Chirlesti;
(b) ruptures (blue arrow) along right and left flanks of the affected area; (c) a mudflow phenomenon
(yellow arrow) is still in progress; and (d) a recent photo of the study area showing the height of
mudflow debris from Chirlesti Village Road (photos by Daniel C. Diaconu).

Landslides are one of the major threats causing soil and ecosystem degradation and
are considered of high importance for the European Union but also for the Black Sea
Region [129]. The EU Thematic Strategy for Soil Protection calls “for actions and means
for the protection and sustainable use of soils as a physical platform on which human
activities are developed” [130,131]. The goal is to pinpoint areas at risk for landslides
and other soil threats, set risk reduction objectives there, and create the necessary tasks,
programs, and management plans of action [132]. In order to quantify the occurrence of
landslides, it is necessary to have applicable data; for this reason, landslide inventories are
of high importance [133]. Attention must be given when comparing spatial intersections
with non-spatial area differencing. Inventories can be either prepared manually or can
be semi-automatically developed in a GIS environment, or even available to everyone
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through a web-GIS platform [134]. Such a cloud-based GIS tool includes surface ruptures,
main shocks, faults, aftershocks, earthquake-triggered landslides, and earthquake intensity
from the 2008 Wenchuan Earthquake [135] in addition to other sources of hazard data.
The proposed framework can support landslide experts, land managers, and responsible
authorities by providing tested UAV-based methods and guidelines for mapping areas at
risk of landslides, with an emphasis on streamside events. The proposed framework is a
substantial development that can help identify landslides easily and quickly in order to
create an inventory focused on the vulnerable Black Sea Region but also allow recommen-
dations of targeted nature-based solutions for preventive measures. For further research,
relationships among land properties, reliefs, forests, and climate extremes can be analyzed.
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Abbreviations

CORS Continuously Operating Reference Stations
CMOS Complementary Metal–Oxide–Semiconductor
DSM Digital Surface Model
GCPs Ground Control Points
GIS Geographic Information Systems
GNSS Global Navigation Satellite System
GPS Global Positioning System
DGPS Differential GPS
GPS-GNSS Global Positioning System/Global Navigation Satellite System
GSD Ground Sampling Distance
IMU Interactive Multimedia Unit
InSAR Interferometric Synthetic Aperture Radar
ISO Iterative Self-Organizing
LiDAR Light Detection and Measurement
Lisa Laser Interferometer Space Antenna
ML Machine Learning
MP Megapixel
NDSI Normalized Difference Soil Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NE Northeast
OBIA Object-Based Image Analysis
OTDR Optical Time Domain Reflectometer
PBIA Pixel-Based Image Analysis
PPK Postprocessing Kinematic
RGB Red, Green, Blue
RTK Real-Time Kinematic
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SAR Synthetic Aperture Radar
SfM Structure from Motion
SMS Segment Mean Shift
SVM Support Vector Machine
SW Southwest
UAV Unmanned Aerial Vehicle
WAAS Wide Area Augmentation System
WGS84 World Geodetic System 1984
WSN Wireless Sensor Networks
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